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ABSTRACT
A multidisciplinary analysis has been applied to subsurface

samples from borehole MAWP 114, Wardha basin, Maharashtra
State, central India, in order to characterize the palaeoclimatic
and local depositional conditions during the deposition of the
Permo-Carboniferous Talchir Formation. Based on palynology,
palynofacies, TOC (Total organic carbon) and δδδδδ13C analyses five
types of palaeoclimatic phases and local depositional conditions
have been envisaged within the studied sequence. In palynofacies
type I (P-I), the dominance of AOM and scarce palynomorphs of
upland xerophytic affinity (represented by primitive conifers such
as Potonieisporites) suggests deposition during the earliest phase
of a glacial retreat in distal anoxic conditions. In P-II dominance
of AOM with moderate increase in palynomorphs and phytoclasts
suggests amelioration in climate and deposition during a mid
interglacial phase under dysoxic to suboxic conditions. In P-III,
increase in palynomorphs and phytoclasts and decrease in AOM
suggests deposition in a median distal to proximal setting under
warm temperate conditions during late interglacial phase. P-I to
P-III have been demarcated in a shale sequence. P-IV is demarcated
in the overlying sandstone-shale intercalation, characterized by
predominance of non-opaque phytoclasts of the pitted and banded
type, subdominance of spore and pollen and low frequency of AOM
and suggests deposition in proximal oxic conditions during final
deglacial phase under high energy settings. P-V recognized in
sandstones, comprising of dominance of terrestrial AOM and
scarce palynomorphs and phytoclasts suggests deposition in post
glacial fluvial, under anoxic to dysoxic setting. These climatic shifts
are also supported by geochemical results from TOC (0.3%-2.2%)
and δδδδδ13C (-24.9‰ to -21.4‰) analyses, as both reflect palaeo-
atmospheric fluctuations in accordance with direct impact of
glaciation and deglaciation episodes on biotic communities along
the studied interval.

INTRODUCTION
The late Carboniferous and early Permian interval is best to

analyse response of vegetation  to glacial-interglacial oscillations, as

it records the transition from cold to warm-climate conditions well-
established in the mid- late Permian (Shi and Waterhouse, 2010).
Montañez and Poulsen (2013) have shown that changes in the
compositions of terrestrial flora, marine fauna and geographic patterns
are indicative of responses to glacial conditions in high-latitude.
Throughout the late Carboniferous and early Permian Gondwana
witnessed a periglacial to cool-temperate climate as well as monsoonal
phases (Parrish, 1990; Scotese et al., 2021). The Gondwanan
sedimentary basins document evidences of several interglacial  phases,
which lead to the establishment of  marine, lacustrine, deltaic and
fluvial environments, during which plant associations succeeded
themselves reflecting ecologic- evolutionary aspect (Bernardes-de-
Oliveira et al., 2016).

 In India, the late Palaeozoic glaciation is recorded in the Permo-
Carboniferous Talchir Formation, which is the oldest stratigraphic
unit of the Gondwana Supergroup. Blanford et al., (1856) designated
Talchir Group to its deposits in the Talchir basin in the State of Odisha.
Climate sensitive lithologies of this unit allowed the recognition of
different paleoenvironments associated to glacial and deglacial
processes such as glacio-fluvial and glacio-lacustrine (Banerjee, 1966;
Ghosh and Mitra, 1975), and glacio-marine (Bose et al., 1992;
Mukhopadhyay and Bhattacharya 1994; Bhattacharya et al., 2002,
2004, 2005, 2009; Bhattacharya, 2003, 2013; Chakraborty and
Bhattacharya, 2005; Bhattacharya and Bhattacharya, 2006, 2007,
2010, 2011, 2012, 2014, 2015). Under the impact of climatic changes,
the floristic Gondwana province underwent a transformation with
regard to its composition and geographic distribution and several
authors have proposed different climatic divisions in India. Vijaya
(1994) recognised three phases in the Talchir Formation due to increase
in microfloral diversity up section: Phase I- Asselian, with common
monosaccate pollen both radially- and bilaterally-symmetrical and non-
sculptured trilete spores. Phase II- by monosaccate sculptured pollen,
bisaccate taeniate pollen and sculptured spores. Phase III- early
Sakmarian, manifesting higher diversity of forms. Such phases
reflecting climatic amelioration were also shown by Banerjee and
D’Rozario (1990), Tiwari (1994), Venkatachala et al., (1995), Pant
(1996) and Vijaya et al., (2001). With some limitations, and considering
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the chronologic changes around the latest Pennsylvanian and the
Asselian of the early Permian that occurred in the last three decades
(see Ogg et al., 2016), these phases can be identified in glacial-deglacial
sequences elsewhere in Gondwana (e.g. MacRae 1988; Stephenson et
al., 2005, 2007, 2013; Stephenson, 2008; Modie and Le Herissé, 2009;
Iannuzzi,  2013; Limarino et al., 2014; di Pasquo et al., 2017; Beri et
al., 2019; Valdez et al., 2020; Backhouse and Mory, 2020; Souza et
al., 2021 and references therein).

Here the nature of climate–vegetation interaction during transition
from late Pennsylvanian-early Permian in Talchir Formation is assessed
which is located in the southern temperate high palaeolatitude Indian
Gondwana sequences and the depositional setting of the succession
studied. The present contribution focuses on the analysis of
palynofacies and botanical affinities of spore-pollen content and
geochemical trends of stable organic carbon isotope and TOC obtained
from subsurface sediments of borehole MAWP 114, in the Wardha
basin, Maharashtra state, Central India (Fig. 1A and B). These analyses
let us interpret the linkage between vegetation and climate shifts in
response to- glacial-interglacial fluctuations in this temperate region
of Gondwana, as well as their local depositional conditions.

GEOLOGICAL SETTING
Following a long depositional hiatus since the Proterozoic, India

entered the South Pole circle (Roy and Purohit, 2018) during the
Permo-Carboniferous period and sedimentation resumed by the Pangea
relaxation (Veevers and Tewari, 1995), and the Gondwanan rift basins
were opened, which led to depressions (broad depocenters) filled with
rock debris from melting glaciers and other deposits related to
glaciation and deglaciation processes.

Therefore, these Indian Gondwana basins preserve a 200 Ma thick
sedimentary succession from the latest Carboniferous to the Early
Cretaceous (Mukhopadhyay et al., 2010). The nature of the Gondwana
sediments was broadly controlled by three common factors: granitic
provenance, the basal unit of glacial origin, and the fluvial nature of
the rest of the overlying succession that largely deposited fluvio-deltaic,
fluvio-lacustrine, and alluvial sediments (Acharyya, 2019a). The upper
Carboniferous to Permian stratigraphic succession is represented by
the glaciogene Talchir Formation, and the overlying carbonaceous shale
and coal-bearing deposits of Damuda, followed by Mesozoic

greenhouse interval represented by the Panchet and its equivalent
formations, composed of feldspathic sandstone and red claystone, and
the Mahadeva or the Supra-Panchet ones bearing rare feldspar,
quartz-arenite and variegated claystones (Acharyya, 2019a).

The Gondwana sedimentary basins are distributed along four
major belts such as E-W Satpura-Son-Damodar, NNW-SSE Wardha-
Godavari, NNW-SSE Mahanadi and N-S Rajmahal- Birbhum
(Fig. 1A). The nature of the upper Paleozoic succession was determined
by a combination of climate change, local environmental conditions
and tectonic activities, especially related to inherited fabrics of
deformation from reactivation of the shear zones and faults settled in
the Precambrian basement (Acharyya, 2019a). These geodynamic
processes terminated with the Gondwanan break up in the Mesozoic
indicated by flooding basalts and mafic and ultramafic intrusions
(Acharyya, 2019b).

The Wardha Basin lies in the north eastern part of Maharashtra
state bordering the states of Madhya Pradesh and Telangana, between
N19o14'39.48", E79o8'27.88" with an estimated area of 4000 km2. It
extends southeastward into Godavari basin in Telangana State
(Fig. 1a). Toward the east, the Gondwana deposits are bordered by
the  Archaean rocks. Towards the northeast, southwest, and southeast
the Precambrian Vindhyan Formation occurs in between the outlines
of the faults of coal-bearing deposits. The Talchir Formation lies in
the central part around the core of which lies the coal of the Barakar
Formation in an elliptical pattern. The Barakar Formation occurs in
isolated patches in the western part and is overlained by the Kamthi
Formation. Towards the west and north the Deccan trap covers
the Gondwana sediments. Towards the north are also patches of
Lameta Formation. The borehole MAWP 114 herein studied was
drilled in Penganga area of Wardha valley coalfield, Chandrapur district
(Fig 1B).

MATERIALS AND METHODS
The borehole MAWP 114 intersected in descending order, the

upper Permian Kamthi (3-78 m), the middle Permian Motur (78-294
m), the lower Permian Barakar (294-469.50 m) and the Permo-
Carboniferous Talchir (469.51-471 m) formations, and unconformably,
the Precambrian basement represented by limestones of the Vindhyan
Group. The interval studied for palynology and geochemical analysis

Fig. 1. A. Map showing the Gondwana basins in India (after Geological Survey of India). B. Map of Maharashtra State showing the coalfields
in the Wardha Basin and the location of MAWP 114 Borehole of the present study.
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is represented by 14 samples of the Permo-Carboniferous Talchir
Formation (Fig. 2).

For palynological analyses and organic matter characterization the
borehole samples were treated according to standard procedures
including 10% hydrochloric acid (HCl), 40% hydrofluoric acid (HF).
The organic residues were sieved over a 500 micron sieve and slides
mounted with Canada balsam. The samples were processed at the Birbal
Sahni Institute of Palaeosciences, Lucknow where the materials are
stored in the museum repository under the codes BSIP 16718-16739.
The microscopic examination of slides carried out under an Olympus
BX61 microscope bearing a DP-25 digital camera with Cell A software.

Despite rather subjective, palynomorphs were classified following
several workers and their botanical affinities indicated (Balme, 1970,
1995; Archangelsky and Gamerro, 1979; Foster 1979; Backhouse,
1991; Azcuy and di Pasquo, 2000; Playford and Dino 2000a, 2000b;
di Pasquo and Grader, 2012; di Pasquo et al., 2021; Kavali et al.,
2021 and references therein). The classification of organic components
and palynomorphs allowed the counting of a minimum of 300 particles
per sample. A semi-quantitative approach was carried out under 20x
magnification and a visual estimation of the relative abundances of
palynological organic components expressed as percentages of PM.

The classification of kerogen applied by Tyson (1995) and
Mendonça-Filho et al., (2010) was used, which include three main

groups of morphologic constituents: phytoclasts, palynomorphs and
amorphous organic matter. In agreement with these authors, the
phytoclast group includes fragments of tissues derived from higher
plants, fungi or other remains, translucent (non-opaque) or opaque
(black) and non-biostructured or biostructured (tracheids, cuticles,
membranes of striate, striped, pitted or banded type) or even
“pseudoamorphous”. The amorphous matter is composed of
diagenetically derived algae or intense biodegradation of any organic
product of both terrestrial and/or marine sources. The graphs were
prepared using Microsoft Excel and Corel draw XVII.

The sample preparation for carbon isotopic analysis followed
procedures applied by Agrawal et al., (2015, 2017). TOC was calculated
from the peak obtained from the sum of the integrated m/z 44, 45 and
46 signal measured in the CF-IRMS (Jensen, 1991). These analyses
were carried out at the stable isotope facility at BSIP, Lucknow,
India.

RESULTS AND INTERPRETATION
All the 14 samples from the Permo-Carboniferous Talchir

Formation of bore hole MAWP114 were productive. A total of 29
palynotaxa composed of trilete spores (13) and pollen grains (16)
chiefly monosaccate and bisaccate type (Table 1), derived from
lycophytes and monilophytes (pteridophytes and sphenophytes) and
several gymnosperm groups (Cordaitalean, Coniferalean, Ginkgo/
Cycadalean, Pteridosperms) have been recorded (Fig. 3). Based on
the palynofacies components and pollen and spore frequencies along
with that of the chlorophycean Botryococcus (Fig. 4) allowed the
characterization of five palynofacies types illustrated in Fig. 5. The
results from Carbon isotope (δ13C) and TOC analysis are given in
Fig. 6 A and B.

On the basis of the qualitative and quantitative results obtained
from palynological, palynofacies and Carbon isotope (δ13C) and TOC
analyses, paleoenvironmental stages could be demarcated (Fig. 3) and
their local depositional settings inferred.

Earliest Phase of a Glacier Retreat
The Phase 1 can be related to sub-polar climate with cold–arid

conditions, wherein a tundra-type vegetation must have covered the
landscape and vegetation would be similar to modern Cold temperate
Biome 8 of Walter (1985). Glaciation resulted in sea-level fall and
climatic aridity. Low diverse floras represented by sparse xeromorphic
allochthonous conifers such as late Pennsylvanian Potonieisporites,
characterize drier habitats in this phase, probably as a consequence of
changing continental configurations during the late Pennsylvanian and
the intensity of glaciation at the poles (Phillips and Peppers, 1984;
Ziegler, 1990). These primitive conifers are indicative of floras from
seasonally-dry habitats (DiMichelle et al., 2010). They reflect a
moisture deficit landscape (Knoll, 1985; DiMichelle et al., 2001). Such
extrabasinal elements could have been transported to the depocenter
in the basin by wind (Farley, 1988; Zhou, 1994; Peppers, 1997; Falcon-
Lang, 2004; Dimitrova and Cleal, 2007; DiMichelle et al., 2010) as
well as water as they are structurally competent to withstand long
distance transport by fluvial agents, and in this case, glacial meltwater.
The fragmentary nature of the pollen grains in the assemblages of this
phase was due to mechanical disintegration in the course of long
distance transportation before final deposition, and not by maceration
processes at laboratory. This was confirmed by processing uncrushed
larger pieces of shale samples (some larger than 5 cm). However, the
residue yielded similar fragmented grains. The depositional setting
for these shale samples is interpreted as a distal part of a sandur
(outwash) plain, which is formed by sediments carried by meltwater
streams that issue from glacial snouts mostly during summers, either
in the proglacial region or downstream, several kilometres from the
ice margin depending upon the local topography. Krigstrom (1962)

Fig. 2. Litholog of MAWP 114 Borehole showing the position of
samples studied.
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recognized three more or less distinct zones of a sandur surface related
to distance from the ice margin- proximal, intermediate and distal zone,
with corresponding decreases in the mean sediment size on the surface
of most aggrading sandur. Hence, deposition in distal reaches of the
outwash plain is envisaged for phase I based on fine clastic material.
Alternatively, deposition in a kettle hole/lake could be proposed, which
are depressions formed by blocks of ice that are detached from a
receding glacier and their eventual melting (Smith, 1985). The absolute
abundance of AOM (90%, Fig. 4 and 5) in palynofacies I suggests
prevalence of anoxic conditions during deposition. The colourless
spongy to granulate AOM masses bearing a mild fluorescence and the
presence of Botryococcus confirmed their algal nature (Tyson, 1995;
Martínez et al., 2008). Presence of pollen and scarce spores agree
with their deposition far from vegetated upland areas where pollen
delivery is primarily by air transport in the absence of river inputs
(Farley, 1988; Tyson, 1995; Falcon-Lang et al., 2004). A poor and
low diverse vegetation during this phase is also reflected by paucity in
phytoclasts (Figs. 3 and 4) and low TOC (0.5-0.6%) and higher
negative δ13C (-24.9 ‰) values (Fig. 6A and B).

Mid Interglacial Phase
This phase reflects amelioration of climate during which active

channel systems sweeping across the outwash plain developed and
there was a slow stabilization of vegetation. Hence, more stable
paleoclimatic conditions triggered an increase in the diversity of the
floras, revealed by the palynofloral composition (see Table 1).
However, the predominance of xerophilous conifers (Fig. 3), along
with seasonally controlled vegetation composed of meso-hygrophilous
cordaitaleans and pteridosperms and ferns from lowlands outside
paleovalleys, and rare hygrophilous lycopsids in refugia or in riparian
niches (Falcon-Lang et al., 2004) support a paleoclimate under cool
and less humid conditions. The cordaitaleans are closely related to the
conifers with which they were initially thought to be as strictly “upland”
dominant para-autochthonous elements in intraformational channel
fill (Feldman et al., 2005; Hilton and Bateman 2006; Falcon-Lang et
al., 2009). However, they were also frequently encountered in basinal
lowlands (DiMichelle et al., 2010) preferring a range of habitats such
as peat-forming and clastic wetlands, seasonally-dry settings, well-
drained floodplains and drought-prone habitats (Falcon-Lang and
Bashforth, 2005) in association with pteridosperms, few calamitaleans,
and sigillarian lycopsids, in the tropical Euramerican landscapes
(Falcon-Lang 2003; Falcon-Lang et al., 2004; Šimùnek, 2008).
Collectively, there is an increase of vegetation in this phase, seasonally
controlled. Deposition in distal dysoxic to sub-oxic conditions is

Table 1. Distribution of taxa and demarcation of Biomes of Walter (1985) encountered in the present study (For sample details see Figure 2). Sample number and
their corresponding BSIP museum repository number. Sample 1: 16738-16739; Sample 2: 16737; Sample 3: 16736; Sample 4: 16735; Sample 5: 16734;
Sample 6: 16733; Sample 7: 16732; Sample 8: 16731; Sample 9: 16730; Sample 10: 16729; Sample 11: 16727-16728; Sample 12: 16724-16726; Sample
13: 16722-16723; Sample 14: 16718-16721.
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inferred based on dominance of AOM with low to moderate
palynomorphs. The above inference and a higher frequency of AOM
and Botryococcus and low phytoclasts as part of the palynofacies II
(Fig. 4) are also supported by a less negative δ13C (-22 ‰) and a low
TOC value (c. 0.5%) (Fig. 6A and B).

Late Interglacial Phase
This phase corresponds to the palynofacies III which is most

dominant in the studied interval characterized by the reduction in AOM
(3-12%) and an increase in palynomorphs (38-70%) and subdominance
of phytoclasts (18-53%). It witnessed delta-plain progradation as the
main landscape, with mineral-substrates and stabilization of high-
diverse vegetation under seasonal conditions. Drier habitats include a
broad range of poorly drained floodplains and levees mainly
represented by allochthonous and para-autochthonous conifers,
cordaitaleans and pteridosperms, whereas wetland habitats are
represented by swamps to riparian and fluvio-deltaic environments
containing lycopsids, cordaitaleans, pteridosperms, and ferns (Fig.  3).

Into this landscape, deposition of palynomorphs and phytoclasts
occurred mainly in distal parts of marshy wetlands containing fine
clastic and peaty material or in inactive areas of outwash fans and
other fresh water bodies. Most of the opaque and especially wood

(xylem) that are quite abundant in several samples of this palynofacies
are derived from the highly lignified mechanical support tissue of
higher plants. As lignin is highly resistant to decay, it tends to become
selectively preserved and therefore, concentrated in sub-oxic facies
rather than fully anoxic conditions (Tyson, 1995). A median proximal
to distal sub-oxic to oxic environment of deposition can be envisaged
for palynofacies III. This is also supported by some fluctuations in
both δ13C ranging between ~ -22‰ - 21‰ and TOC values (Fig. 6A
and B) reflecting variations in redox conditions at the time of
deposition. Therefore, the increase in palynodiversity is correlatable
with the shift from arid conditions prevailing in the lower phases to
humid and temperate climate conditions equivalent to modern Warm
temperate Biome 6 of Walter (1985).

Final Deglacial Phase
The rising temperatures led to the melting of glaciers triggering

eustatic sea level rise and changes in sedimentary transport processes,
weathering and expansion of vegetation.

This phase characterized by palynofacies IV, exhibits sub-
dominance of conifer and cordaitean pollen grains (Fig. 3) recording
their signature of upland floras that survived the deglaciation-driven
flooding of lowland environments (Falcon-Lang and Bashforth, 2004).

Fig. 3.  Relative abundance of the plant groups documented in MAWP 114 Borehole that characterizes five paleoenvironmental stages in the
studied area.

Fig. 4. Distribution of the palynofacies components and demarcation of I-V palynofacies along MAWP 114 Borehole.
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Plate 1. Some spores from the study area. 1, 2. Botryococcus braunii Kützing. 1. BSIP 16729, EF: Z.36.2; 2. BSIP 16729, EF: Y.52.1. 3-6. Thoecamoebia sp. 3.
BSIP 16725, EF: X.53; 4. BSIP 16739, EF: Q.57; 5. BSIP 16737, EF: Q.34; 6. BSIP 16728, EF: P.45. 7. Unknown sp. BSIP 16728, EF: E.52.3. 8. Unknown sp.
BSIP 16725, EF: Y.66.1. 9. Cristatisporites conatus (Lele and Makada) Kavali, Roy, di Pasquo, Puttojirao, Sharma, Kumar. BSIP 16732, EF: K.45. 10.
Cristatisporites pseudozonatus (Lele and Makada) Jones & Truswell. BSIP 16732, T. 39.4. 11. Cristatisporites tetrad. BSIP 16732, EF: W.44.3. 12. Indotriadites
korbaensis Tiwari 1964 BSIP 16738, EF: O.34.1 13. Lundbladispora sp. BSIP 16731, EF: T.39.1. 14. Calamospora hartungiana Schopf, Wilson and Bentall.
BSIP 16732, EF: T.39.4. 15-17. Punctatisporites gretensis Balme and Hennelly. 15. BSIP 16731, EF: W.85. 16. BSIP 16731, EF: X.46. 17. BSIP 16731, EF:
T.39.1.  18. Horriditriletes ramosus (Balme and Hennelly, 1956) Bharadwaj & Salujha. BSIP 16731, EF: X.52.1. 19. Leiotriletes directus Balme and Hennelly.
BSIP 16732, EF: V.60. 20.  Leiotriletes virkkii Tiwari. BSIP 16732, EF: V. 60.
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Selected pollen grains from the study area: 1. Verrucosisporites verrucosus (Ibrahim) Ibrahim. BSIP 16735, EF: V.39.4. 2. Verrucosisporites sp. tetrad. BSIP
16735, EF: R.50. 3. Cycadopites cymbatus Balme and Hennelly. BSIP 16731, EF: V.52. 4. Protohaploxypinus pennatulus (Andreyeva) Hart.  BSIP 16732, EF:
U.24.2 5,6. Protohaploxypinus limpidus (Balme and Hennelly) Balme and Playford. 5. BSIP 16732, EF: Q.57.3; 6. BSIP 16732, EF: S.33.1. 7. Cannanoropollis
janakii Potonié and Sah. 7. BSIP 16736, EF: S.63.1;  8. Cannanoropollis densus BSIP 16735, EF: V.39.4. 9. Plicatipollenites malabarensis (Potonié and Sah)
Foster.  BSIP 16732, EF: S.41 10. Scheuringipollenites maximus (Hart) Tiwari.  BSIP 16739, EF: S.34.1. 11. Caheniasaccites flavatus (Bose and Kar) Azcuy
and di Pasquo.  BSIP 16734, EF: S.49. 12. Potonieisporites lelei Maheshwari. BSIP 16732, EF: P.28. 13. Potonieisporites novicus (Bharadwaj) Poort and Veld.
BSIP 16730, EF: Y.42. 14. Potoniesporites congoensis Bose and Maheshwari. BSIP 16726, EF: L. 54.1. 15. Limitisporites rectus Leschik. BSIP 16735, EF: T.51

The palynodiversity reflects a higher proportion of allochthonous
extrabasinal elements coming from intramontane positions through
rivers to relative lowlands in distal areas during climatically wetter
periods of peat formation. It is inferred that air transport of pollen
grains into the area of deposition reflect a wider distribution of
gymnosperms from upland to lowlands and can be combined with
stronger wind circulation across the Palaeotethys (Saltzman 2003; Shi
and Waterhouse 2010; Heavens et al., 2015).

Post Glacial Phase
The complete withdrawal of glaciers led to basin uplift and

exhumation due to post glacial isostatic rebound, which led to the

development of normal faults leading to the deposition of fluvial
deposits of post Talchir, Karharbari / Barakar Formation (Bhattacharya
et al., 2005; Bhattacharya and Bhattacharya, 2015).

The sparse floral record and higher AOM of terrestrial nature
(sample 1, Figs. 3-5) and lower TOC values (Fig. 6B) of this phase
are likely due to taphonomic processes during deposition of fine to
medium grained sandstones under distal dysoxic to anoxic conditions.
Nevertheless, it is not believed that there was a reduction in the diversity
and abundance of the floras considering the general abundance of the
coal precursor plant communities present in upper Talchir
palynoassemblages (Table 2), which is also consistent with the record
of overlying relatively thin (1–90 cm) numerous coal intervals in the
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Barakar Formation. Unfortunately, mine officers did not allow sampling
the coal levels observed above the sandstone bed and the remaining
core upwards. The coal intervals prove the establishment of short lived
mires in emergent delta-top environments under low subsidence rates,
which would favour the formation of peat and their eventual
transformation into coal in this region as well as in other Indian basins
(Bhattacharya et al., 2005; Mukhopadhyay et al., 2010; Bhattacharya
and Bhattacharya, 2015 and references therein).

Therefore, considering the detailed palaeoenvironmental changes
based on palynofacies and floristic composition and geochemical data
obtained from a thin shale core of the Talchir and the lower fine

sandstone layer of the Barakar formations, a correlation to climatic
belts of Scotese et al., (2021) is proposed.

During the lower two phases, sub-polar climate related to cold–
arid conditions prevailed (Fig. 3) and vegetation could have been
similar to modern Cold temperate Biome 8 of Walter (1985) (Table
1). The Late interglacial (III) to postglacial (IV-V) phases (Fig. 3)
could be correlated to Biome 6 of Walter (1985) (Table 1) and would
correspond to the “seasonally warm/cold temperate” of the modern
Köppen Climate Belts (Scotese et al., 2021), based on palynofacies
and more diverse floristic composition reinforced by geochemical data
(Fig. 6A and B). As described above, the last phase identified just

Fig. 5. Kerogen aspect of palynofacies type I-V . For relative abundance of each component see Figure 4.
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Table 2. Alphabetical list of Spores and pollen documented in the lower (LT) and upper (UT) Talchir Formation of India. References: A= Present study; B=
Wardha Basin (Lele, 1979; Kavali et al., 2021); C= Godavari Basin (Tiwari and Tripathi, 1988, 1992; Tiwari, 1994; Jha et al., 2018; Aggarwal and Jha, 2013);
D= Satpura Basin (Tiwari and Tripathi, 1988, 1992; Tiwari, 1994); E= Son Mahanadi Basin (Tiwari and Tripathi, 1988, 1992; Tiwari 1994); F= Damodar Basin
(Tiwari and Tripathi, 1988, 1992; Tiwari 1994); G= Rajmahal Basin (Tiwari 1994; Murthy et al., 2020)(Note: Since they have been reported extensively from all
the basins, only those publications which summarize data from different basins have been referred).
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before the first record of coal beds of the Barakar Formation confirms
a paleoclimatic warming trend. The modern warm temperate Biome 6
of Walter (1985) is suitable for comparing the floristic features during
these three phases despite the differences between modern
paleogeographic configuration of Southern Hemisphere, which is
mostly dominated by oceans with smaller and separated continents.

In summary, an overall palaeoclimatic change throughout this
section testifies a shift from Late Pennsylvanian Ghzelian (~302) cold–
temperate-arid (Boucot et al., 2013) to Asselian (~ 297, early Permian)
temperate-humid climatic conditions (Scotese et al., 2021).

CONCLUSIONS
Late Paleozoic climate change had pronounced effects on

vegetation wherein major palaeoecological changes were exhibited in
the relative abundance of taxa due to postglacial climatic warming.

Quantitative counts of relative abundance of palynofacies
components and botanical affinities of palynomorphs and geochemical
data (TOC and δ13C) obtained from fourteen shale and one sandstone
interval from borehole MAWP 114, allowed us to assess late
Pennsylvanian-early Permian vegetational communities in a high-
latitude, intracratonic setting of India. A total of 29 palynotaxa were
documented, comprising 13 trilete spores derived from lycophytes
and monilophytes (pteridophytes and sphenophytes) and 16
monosaccate and bisaccate pollen grains of gymnosperm groups
(Cordaitalean, Coniferalean, Ginkgo/Cycadalean, Pteridosperms).
Algal remains mostly Botryococcus are also variably present.

A relationship between global climatic change and vegetation in
the aftermath of the late Paleozoic ice age is suggested, and five phases
delimited: (I) earliest phase of a glacier retreat; (II) mid interglacial
phase; (III) late interglacial phase; (IV) final deglacial phase; (V)
postglacial phase. Hence, plant assemblages and palynofacies features
of the Talchir Formation demonstrate that late Pennsylvanian and early
Permian temperate vegetation contracted and expanded in response
to glacial-interglacial rhythms.

In the lower part of the section, a cold-arid climate persisted
wherein a primitive conifer community developed on the surrounding
uplands. This vegetation is similar to modern Cold temperate Biome
8 of Walter (1985). There is also evidence that a specialised
autochthonous freshwater algal Botryococcus occupied small ponds
in lowland wetland environments.

In the upper part of the section more diverse vegetation developed
under temperate-humid conditions equivalent to modern Warm
temperate Biome 6 of Walter (1985), wherein a cycad-like and lycopsid
vegetation developed in the lowland alluvial plains. Striate and non -
striate bisaccate pollen producing gymnospermous flora developed in
the uplands or in better drained areas.

These climatic and biotic shifts documented in the studied samples

of the Talchir Formation are supported by coeval palynofloras across
India, testifying similar climate fluctuations around Gondwana.
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